Tuyển tập 80 bài Toán hình học khối 9

Bài 22. Cho hình vuông ABCD, điểm E thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với DE,

đường thẳng này cắt các đường thẳng DE và DC theo thứ tự ở H và K.

1. Chứng minh BHCD là tứ giác nội tiếp .

2. Tính góc CHK.

3. Chứng minh KC. KD = KH.KB

4. Khi E di chuyển trên cạnh BC thì H di chuyển trên đường nào?

Lời giải:

1. Theo giả thiết ABCD là hình vuông nên BCD = 900; BH  DE

tại H nên BHD = 900 => như vậy H và C cùng nhìn BD dưới một

góc bằng 900 nên H và C cùng nằm trên đường tròn đường kính BD

=> BHCD là tứ giác nội tiếp.

2. BHCD là tứ giác nội tiếp => BDC + BHC = 1800. (1)

BHK là góc bẹt nên KHC + BHC = 1800 (2).

Từ (1) và (2) => CHK = BDC mà BDC = 450 (vì ABCD là hình vuông) => CHK = 450 .

3. Xét KHC và KDB ta có CHK = BDC = 450 ; K là góc chung

=> KHC  KDB => KC KH

KB KD

 => KC. KD = KH.KB.

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY