Tông hợp phương pháp giải toán casio

VIII. Tìm n chữ số tận cùng của một luỹ thừa:Để tìm n chữ số tận cùng của 1 luỹ thừa , ta tìm dư của luỹ thừa đó với 10^n Heheh , có phải rất hay không nào . Tuy nhiên . Nếu người ta kiu tìm từ 1 đến 3 chữ số tận cùng của một luỹ thừa mà ta làm theo bài học trên thì thật là , quá oải . Chính vì thế , tui xin post một bài như sau : _ Tìm 1 chữ số tận cùng của : * Nếu a có chữ số tận cùng là 0 , 1 , 5 hoặc 6 thì lần lượt có chữ số tận cùng là 0 , 1 , 5 hoặc 6 . * Nếu a có chữ số tận cùng là 2 , 3 hoặc 7 , ta có nhận xét sau với k thuộc tập hợp số tự nhiên khác 0 : 2^4k đồng dư 6 ( mod 10 ) 3^4k đồng dư 1 ( mod 10 ) 7^4k đồng dư 1 ( mod 10 ) Do đó để tìm 1 chữ số tận cùng của a^n với a có số tận cùng là 2 , 3 , 7 ta lấy n chia cho 4 . Giả sử n = 4k + r với r thuộc { 0 , 1 , 2 , 3 } Nếu a đồng dư 2 ( mod 10 ) thì a^2 dồng dư 2^n = 2^(4k+r) đồng dư 6.2^r ( mod 10 ) Nếu a đồng dư 3 ( mod 10 ) thì a^n = a^(4k+r) đồng dư a^r ( mod 10 ) _ Tìm 2 chữ số tận cùng của a^n Ta có nhận xét sau : 2^20 đồng dư 76 ( mod 100 ) 3^20 đồng dư 1 ( mod 100 ) 6^5 đồng dư 76 ( mod 100 ) 7^4 đồng dư 01 ( mod 100 ) Mà 76^n đồng dư 76 ( mod 100 ) với n >= 1 và 5^n đồng dư 25 ( mod 100 ) với n >= 2 Suy ra kết quả sau với k là các số tự nhiên khác 0 : a^20k đồng dư 00 ( mod 100 ) nếu a đồng dư 0 ( mod 10 ) a^20k đồng dư 01 ( mod 100 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 ) a^20k đồng dư 25 ( mod 100 ) nếu a đồng dư 5 ( mod 10 ) a^20k đồng dư 76 ( mod 100 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 ) Vậy túm lại , để tìm 2 chữ số tận cùng của a^n ta lấy số mũ 2 chia cho 20 _ Ta có : a^100k đồng dư 000 ( mod 10^3 ) nếu a đồng dư 0 ( mod 10 ) a^100k đồng dư 001 ( mod 10^3 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 ) a^100k đồng dư 625 ( mod 10^3 ) nếu a đồng dư 5 ( mod 10 ) a^100k đồng dư 376 ( mod 10^3 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )

VIII. Tìm n chữ số tận cùng của một luỹ thừa:

Để tìm n chữ số tận cùng của 1 luỹ thừa , ta tìm dư của luỹ thừa đó với 10^n

Heheh , có phải rất hay không nào .

Tuy nhiên . Nếu người ta kiu tìm từ 1 đến 3 chữ số tận cùng của một luỹ thừa mà ta làm theo bài học trên thì thật là , quá oải . Chính vì thế , tui xin post một bài như sau :

_ Tìm 1 chữ số tận cùng của :

* Nếu a có chữ số tận cùng là 0 , 1 , 5 hoặc 6 thì lần lượt có chữ số tận cùng là 0 , 1 , 5 hoặc 6 .

* Nếu a có chữ số tận cùng là 2 , 3 hoặc 7 , ta có nhận xét sau với k thuộc tập hợp số tự nhiên khác 0 :

2^4k đồng dư 6 ( mod 10 )

3^4k đồng dư 1 ( mod 10 )

7^4k đồng dư 1 ( mod 10 )

Do đó để tìm 1 chữ số tận cùng của a^n với a có số tận cùng là 2 , 3 , 7 ta lấy n chia cho 4 . Giả sử n = 4k + r với r thuộc { 0 , 1 , 2 , 3 }

Nếu a đồng dư 2 ( mod 10 ) thì a^2 dồng dư 2^n = 2^(4k+r) đồng dư 6.2^r ( mod 10 )

Nếu a đồng dư 3 ( mod 10 ) thì a^n = a^(4k+r) đồng dư a^r ( mod 10 )

_ Tìm 2 chữ số tận cùng của a^n

Ta có nhận xét sau :

2^20 đồng dư 76 ( mod 100 )

3^20 đồng dư 1 ( mod 100 )

6^5 đồng dư 76 ( mod 100 )

7^4 đồng dư 01 ( mod 100 )

Mà 76^n đồng dư 76 ( mod 100 ) với n >= 1

và 5^n đồng dư 25 ( mod 100 ) với n >= 2

Suy ra kết quả sau với k là các số tự nhiên khác 0 :

a^20k đồng dư 00 ( mod 100 ) nếu a đồng dư 0 ( mod 10 )

a^20k đồng dư 01 ( mod 100 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 )

a^20k đồng dư 25 ( mod 100 ) nếu a đồng dư 5 ( mod 10 )

a^20k đồng dư 76 ( mod 100 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )

Vậy túm lại , để tìm 2 chữ số tận cùng của a^n ta lấy số mũ 2 chia cho 20

_ Ta có :

a^100k đồng dư 000 ( mod 10^3 ) nếu a đồng dư 0 ( mod 10 )

a^100k đồng dư 001 ( mod 10^3 ) nếu a đồng dư 1 ; 3 ; 7 ; 9 ( mod 10 )

a^100k đồng dư 625 ( mod 10^3 ) nếu a đồng dư 5 ( mod 10 )

a^100k đồng dư 376 ( mod 10^3 ) nếu a đồng dư 2 ; 4 ; 6 ; 8 ( mod 10 )

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY