Luận án Tập hút của một số lớp phương trình đạo hàm riêng với trễ vô hạn

Các phương trình đạo hàm riêng có trễ xuất hiện trong nhiều quá trình của vật lí và sinh học, chẳng hạn các quá trình truyền nhiệt và khuếch tán, quá trình truyền sóng trong cơ học chất lỏng, các mô hình quần thể trong sinh học (xem [31, 70]). Việc nghiên cứu những lớp phương trình này có ý nghĩa quan trọng trong khoa học và công nghệ. Chính vì vậy nó đã và đang thu hút được sự quan tâm của nhiều nhà khoa học trên thế giới. Khi xét một quá trình thay đổi theo thời gian mô tả bởi phương trình tiến hóa, sau khi nghiên cứu tính đặt đúng của bài toán, việc nghiên cứu dáng điệu tiệm cận của nghiệm khi thời gian ra vô cùng rất quan trọng vì nó cho phép chúng ta hiểu và dự đoán xu thế phát triển của hệ trong tương lai, từ đó có thể có những điều chỉnh thích hợp để đạt được kết quả mong muốn. Về mặt toán học, điều này làm nảy sinh một hướng nghiên cứu mới, được phát triển mạnh mẽ trong khoảng ba thập kỉ gần đây là Lí thuyết các hệ động lực tiêu hao vô hạn chiều. Bài toán cơ bản của lí thuyết này là nghiên cứu sự tồn tại và các tính chất của tập hút. Đó là một tập compact, bất biến, hút mọi tập bị chặn và chứa đựng nhiều thông tin về dáng điệu tiệm cận của hệ động lực đang xét. Từ khi ra đời đến nay, lí thuyết này đã và đang là một trong những hướng nghiên cứu lớn, thu hút được sự quan tâm của nhiều nhà toán học trên thế giới. Sau khoảng ba thập kỉ phát triển, sự tồn tại và các tính chất cơ bản của tập hút đã được nghiên cứu cho một lớp khá rộng các phương trình đạo8 hàm riêng phi tuyến và phương trình vi phân thường có trễ (xem, chẳng hạn, các cuốn chuyên khảo của Hale [31], Temam [58]). Tuy nhiên, bài toán này đối với các hệ động lực sinh bởi phương trình đạo hàm riêng có trễ thường rất phức tạp vì hệ động lực tương ứng là vô hạn chiều theo cả biến không gian (do toán tử đạo hàm riêng gây ra) và biến thời gian (do trễ gây ra).

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC