Hướng dẫn và đáp án môn Toán vào chuyên ngữ (1991-2010) - Vũ Danh Được

Từ phương trình thứ nhất của hệ ta suy ra |x|, |y| 1. Lại có từ phương trình thứ hai suy ra x, y 0. Do đó ta có 0 x, y 1. Dẫn đến x + y + xy + 2001 > 0. Từ phương trình thứ hai ta xét: (*) Với x > y thì VT của phương trình luôn dương, VP của phương trình luôn âm nên với x > y thì phương trình vô nghiệm dẫn đến hệ vô nghiệm. (*) Với x < y, chứng minh tương tự cũng có hệ vô nghiệm.

Từ phương trình thứ nhất của hệ ta suy ra |x|, |y| 1. Lại có từ phương

trình thứ hai suy ra x, y 0. Do đó ta có 0 x, y 1. Dẫn đến x + y + xy

+ 2001 > 0. Từ phương trình thứ hai ta xét:

(*) Với x > y thì VT của phương trình luôn dương, VP của phương

trình luôn âm nên với x > y thì phương trình vô nghiệm dẫn đến hệ

vô nghiệm.

(*) Với x < y, chứng minh tương tự cũng có hệ vô nghiệm.

TÀI LIỆU LUẬN VĂN CÙNG DANH MỤC

TIN KHUYẾN MÃI

  • Thư viện tài liệu Phong Phú

    Hỗ trợ download nhiều Website

  • Nạp thẻ & Download nhanh

    Hỗ trợ nạp thẻ qua Momo & Zalo Pay

  • Nhận nhiều khuyến mãi

    Khi đăng ký & nạp thẻ ngay Hôm Nay

NẠP THẺ NGAY